Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process

نویسندگان

  • Chen Li
  • Zhuan-Hua Wang
  • Deng-Guang Yu
  • Gareth R Williams
چکیده

This manuscript reports a new type of drug-loaded core-shell nanofibers that provide tunable biphasic release of quercetin. The nanofibers were fabricated using a modified coaxial electrospinning process, in which a polyvinyl chloride (PVC)-coated concentric spinneret was employed. Poly (vinyl pyrrolidone) (PVP) and ethyl cellulose (EC) were used as the polymer matrices to form the shell and core parts of the nanofibers, respectively. Scanning and transmission electron microscopy demonstrated that the nanofibers had linear morphologies and core-shell structures. The quercetin was found to be present in the nanofibers in the amorphous physical status, on the basis of X-ray diffraction results. In vitro release profiles showed that the PVP shell very rapidly freed its drug cargo into the solution, while the EC core provided the succedent sustained release. Variation of the drug loading permitted the release profiles to be tuned.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Drug Release Electrospun Core-Shell Nanofibers with Tunable Dose in the Second Phase

This study reports a new type of drug-loaded core-shell nanofibers capable of providing dual controlled release with tunable dose in the second phase. The core-shell nanofibers were fabricated through a modified coaxial electrospinning using a Teflon-coated concentric spinneret. Poly(vinyl pyrrolidone) and ethyl cellulose were used as the shell and core polymer matrices respectively, and the co...

متن کامل

Synthesis of cellulose acetate nanofibers and its application in the release of some drugs

Objective(s): The purpose of this study was to compare novel sandwich-structured nanofibrous membranes, and coaxial and usual methods, to provide sustained-release delivery of morphine for drug delivery. In this work, synthesis ofnanofibrous cellulose acetate (NFC) was carried out by electrospinning. Methods: A weighed amount of cellulose acetate (CA) pow...

متن کامل

Application of guar gum in electrospun nanofibers as mebendazole drug release controller: a kinetic study and thermodynamics analysis

The current study aimed at in vitro investigating the kinetic study and thermodynamic analysis of mebendazole drug released from electrospun cellulose nanofiber in which guar gum is used as a release controller. The nanofibers were fabricated by electrospinning technique. The fibers were boosted by different controller guar gum 10 at 50, 250, and 500 ppm concentrations. The drug releas...

متن کامل

Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process

BACKGROUND The objective of this investigation was to develop a new class of antibacterial material in the form of nanofibers coated with silver nanoparticles (AgNPs) using a modified coaxial electrospinning approach. Through manipulation of the distribution on the surface of nanofibers, the antibacterial effect of Ag can be improved substantially. METHODS Using polyacrylonitrile (PAN) as the...

متن کامل

A review on electrospun nanofibers for oral drug delivery

Nowadays, polymer nanofibers have gained attention due to remarkable characteristics such as high porosity and large surface area to volume ratio. Among their fabrication methods, electrospinning technique has been attracted as a simple and reproducible approach. It is a versatile, simple and cost-effective technique for the production of continuous nanofibers with acceptable characteristics su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014